Merkezi işlem birimi Türkçe kısaltması MİB, İngilizce: Central Process Unit ya da kısaca CPU, dijital bilgisayarların veri işleyen ve yazılım komutlarını gerçekleştiren bölümüdür. Çalıştırılmakta olan yazılımın içinde bulunan komutları işler. Mikroişlemciler ise tek bir yonga içine yerleştirilirmiş bir merkezi işlem birimidir. 1970’lerin ortasından itibaren gelişen mikroişlemciler ve bunların kullanımı, günümüzde MİB teriminin genel olarak mikroişlemciler yerine de kullanılması sonucunu doğurmuştur.
Bilgisayar işlemcisi, bilgisayarın merkezi işlem birimidir (CPU). Bu, bilgisayarın tüm temel hesaplama işlemlerini gerçekleştirdiği ve programların çalıştığı temel bileşenlerden biridir. İşlemciler, genellikle aritmetik ve mantıksal işlemleri gerçekleştirir, veri işleme ve kontrol işlevlerini yönetir ve bilgisayarın diğer bileşenleriyle iletişim kurar.
İşlemciler, saat hızı, bellek önbelleği boyutu, çekirdek sayısı, mimari türü ve diğer özellikler gibi çeşitli özelliklere sahip olabilir. Günümüzde, işlemciler genellikle tek çekirdekli veya çoklu çekirdekli yapıda olabilir. Tek çekirdekli işlemciler yalnızca bir işlemi aynı anda gerçekleştirebilirken, çok çekirdekli işlemciler aynı anda birden fazla işlemi yürütebilir.
Ayrıca, işlemciler genellikle işlemci mimarilerine göre farklılıklar gösterirler. Örnek olarak x86, x86-64 (AMD64 veya Intel 64 olarak da bilinir), ARM, MIPS gibi farklı mimarilere sahip işlemciler bulunmaktadır. Bu mimariler, işlemcilerin nasıl çalıştığı, komut seti ve performans özellikleri gibi açılardan farklılık gösterir.
Son yıllarda, yapay zeka, derin öğrenme ve büyük veri analizi gibi karmaşık işlemleri gerçekleştirebilmek için özel işlemciler ve grafik işlemcileri de geliştirilmiştir. Bu işlemciler, özel hesaplama ihtiyaçlarını karşılamak üzere optimize edilmiştir.
Genel olarak, işlemciler, bilgisayar teknolojisinin temel yapı taşlarından biri olarak bilinir ve bilgisayarın performansı, hızı ve verimliliği üzerinde önemli bir etkiye sahiptir.
Merkezi işlem birimi aritmetik ve mantıksal işlem yapma yeteneğine sahiptir. Giriş ve çıkış birimleri arasında verilen yazılım ile uygun çalışmayı sağlar. MİB, makine dili denilen düşük seviyeli kodlama sistemi ile çalışır; bu kodlama sistemi bilgisayarın algılayabileceği işlem kodlarından oluşur. Bir mikroişlemcinin algılayabileceği kodların tamamına o işlemcinin komut kümesi denir.
Merkezi işlem birimi aritmetik ve mantıksal işlemleri Aritmetik Mantık Birimi (AMB) aracılığıyla yapar. Bunun dışında virgüllü sayılarla daha rahat hesap yapabilmesi için bir Kayan Nokta işlem birimi (FPU) vardır. Mikroişlemcinin içerisinde bulunan küçük veri saklama alanlarına yazmaç denir.
İlk Merkezî İşlem Birim’leri (MİB) daha büyük,bazen türünün tek örneği bilgisayarlar için özel olarak tasarlanmışlardı. Ancak belirli bir uygulama için özel MİB tasarımının masraflı olmasıi bir veya birçok amaç için yapılan kitlesel olarak üretilmiş işlemcilerin gelişmesine yol açtı. Bu standartlaşma eğilimi ayrık transistörlü ana sistemler ve mini bilgisayarlar döneminde başladı ve entegre devrelerin (ED) popülerleşmesiyle giderek hız kazandı. ED, giderek daha karmaşık ve nanometre ile ölçülebilecek MİB’lerin tasarlanmasına ve üretilmesine olanak verdi. MİB’lerin küçülmesi ve standartlaşması, modern hayatta dijital cihazların varlığını ilk bilgisayar örneklerinin sınırlı uygulamalarının çok ötesinde arttırdı.
İlk işlemciler, belli işlemler için özel üretilen ve büyük olan parçalardı. Daha sonraları ise maliyeti çok yüksek olan bu üretim şeklinin yerini, gelişen teknoloji ile daha ufak olan ve tek işlev yerine çok işleve sahip olan üretimler almıştır. Bu dönemin başlaması, transistörlerin ve mini-bilgisayarların ortaya çıkışına dayanmaktadır. tümleşik devrelerin yayılmasıyla da hız kazanmıştır. Tümleşik devreler, işlemcilerin daha kompleks olarak tasarlanmasına ve bunların çok az yer kaplayacak şekilde (milimetreler cinsinden) üretilmesine olanak sağlamıştır. Bu sayede işlemciler modern hayatta birçok yerde kullanılmaya başlanmıştır (otomobiller, cep telefonları…).
Günümüz işlemcilerine benzerliklerin başlamasından önce, ENIAC ve benzeri bilgisayarların belli işleri gerçekleştirebilmesi için bağlantılarının fiziksel olarak değiştirilmesi gerekiyordu. MİB kelimesi genel olarak yazılım (bilgisayar programı) uygulama aracı olarak tanımlandığından, gerçek anlamda MİB’lerin oluşumu kayıtlı-program bilgisayarların gelişimi ile ortaya çıkmıştır.
Kayıtlı-program bilgisayar fikri ENIAC tasarımı esnasında mevcut olmasına rağmen, bu fikir makinenin erken bitirilebilmesi için rafa kaldırılmıştı. 30 Haziran 1945’te, ENIAC henüz tamamlanmadan, matematikçi John von Neumann, EDVAC proje raporunun ilk taslağını yayımladı. Bu taslakta kayıtlı-program bilgisayarının ancak Ağustos 1949’da tamamlanabileceği gösteriliyordu. EDVAC, belli sayıda operasyonları gerçekleştirecek şekilde tasarlanmıştı. EDVAC için yazılan programlar, kabloların fiziksel olarak değiştirilmeyi gerektiren bir ortamda değil, hızlı bir bilgisayar belleğinde kayıtlı tutuluyordu. Bu özelliğiyle de ENIAC’ın kısıtlamalarının üstesinden gelip, zamandan ve zahmet açısından tasarruf sağlıyordu. Her ne kadar von Neumann kayıtlı-program bilgisayar fikrini ortaya koyan kişi olarak gösterilse de ondan önce de (örneğin Konrad Zuse’nin) benzer fikirler vardı. Ayrıca, EDVAC’tan önce tamamlanan Harvard Mark I’nın Harvard mimarisi, elektronik bellek yerine delikli kâğıt şerit kullanarak kayıtlı-program dizaynı gerçekleştirmişti. Günümüzde ise modern MİB’ler temel olarak von Neumann tasarımı olsa da, Harvard mimarisinden de özellikler göze çarpmaktadır.
Dijital aygıt olmalarından ötürü, tüm MİB’ler ayrık durumlarla ilgilenirler; bu yüzden durumları ayırt edebilmek için bir çeşit geçiş unsuruna ihtiyaçları vardır. Transistörlerin kabulünden önce, elektriksel röleler ve vakum tüpleri bu amaç için kullanılırlardı. Bunların her ne kadar hız avantajı olsa da, tamamen mekanik dizayn olduklarından değişik sebeplerden dolayı güvenilir değillerdi. Örneğin, doğru akım ardışık mantık devrelerinin rölelerden dışarı kurulması, kontak sekmesi problemiyle baş edebilmek için fazladan donanım gerektiriyordu. Vakum tüpleri kontak sekmesi sorunu yaşamazken, bunlar, tamamıyla çalışır hale gelebilmek için ısınma gerektiriyordu, ve işler durumdan da hep birlikte çıkmaları gerekiyordu. Genelde, tüplerden biri başarısız olduğunda, bozulan parçanın tespit edilmesi için MİB’in teşhis edilmesi gerekmekteydi. Bu yüzden vakum tüplü bilgisayarlar daha hızlı olmasına rağmen röle bazlı bilgisayarlardan daha az güvenilirdi. Tüp bilgisayarlarında (EDVAC) arızalanma 8 saatte bir olurken, röle bilgisayarlarında (Harvard Mark I) daha nadir rastlanıyordu. Sonuç olarak ise tüp bazlı MİB’ler hız avantajının arızalanma sorunundan daha ağır basmasından dolayı daha yaygın hale geldiler. Bu eski senkron MİB çeşitleri, günümüzle kıyaslandığında, oldukça düşük saat frekanslarında çalışmaktaydılar. Kuruldukları geçiş aygıtlarının hızlarıyla kısıtlandıkları için, o zamanlar 100 kHz ile 4 MHz arasında değişen saat sinyal frekans değerleri oldukça yaygındı.